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ABSTRACT

Guided modes spectrum of the elliptical dielectric waveguide has been completed and correspondence bet-—
ween modes in circular, elliptical, rectangular and slab dielectric waveguides have been investigated with details
Based on the results, an elliptical model description technique for planar waveguides has been suggested. This
technique has, by exemple, been shown to be applicable for lower order modes in microslot lines and open suspended
strip-line. Elliptical dielectric waveguide is also shown as a very practical structure to approximate dielectric

resonator of high permittivity with various shapes.
I - INTRODUCTION

The guiding properties of some important mi-
crowave and millimeter wave integrated circuit have
been considered in a great number of recent papers.

All they show the extreme mathematical compléxity which
is encountered to obtain rigourously dispersion charac-
teristics of guided modes in planar structures. In con-
trast, when the mathematical approach is very simplified
it is only an approximate technique available on some
limited cases.

Nowaday, in spite of their multiplicity effi-
ciency of some planar waveguides to be used as transmis-
sion lines remains a very important problem. This is due
to the lack of informations about practical parameters
such as like - T.E.M. characteristic impedances, dielec—
tric and "skin" losses coefficients. These last practi-
cal data are estimated from knowledge of mode field com—
ponentswhich are not always easily deduced from the spe-
cific numerical approach of the dispersion properties,

This paper showshow, from an approximate ellip-
tical model description of some well known planar struc-—
ture, the classical waveguide treatment yields both dis-
persion characteristics and fields components of funda-
mental and some higher order modes.

IT - THE ELLIPTICAL DIELECTRIC WAVEGUIDE

The first of the main ideas of the study des-
cribed in this paper is that the elliptical dielectric
waveguide can approximate a great number of different
shapes. So, depending upon the eccentricity e such as

1/cosh
e = / EO 9 1/2
1/{1+(2/v/p)?}
the elliptical rod can take the form of a circular wave-
guide (e v 0), an approximate rectangular waveguide

(.9<e<.1) and at last a slab dielectric waveguide
(ev1) as shown in figure 1.
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Fortunately, an exact analytic solution, although very
involved, exists for the guided mode spectrum of the el
liptical dielectric waveguide. However, only detailed
theoretical as well as experimental results have been
given only on dominant modes e HE{{ and o EH1q vy C.YEHL

Thus,it was of our interest to complete them by propa—
gation properties of higher order modes.

The appropriate solution of the waveguide
treatment are of two types because the symmetry mirror
about the plane y'=0. So, even and odd modes are res—
pectively defined by

Bz(x',-y")=Ez(x/y") Bz(x';y')=—Ez(x',y")

Ep(x =y ") =-E(x%y ") Eplxyy =B, (x)y )
ety ey )=tz ey | OO gy (g )

By )= (x)y ) Hplx'5y )=-H{x}y")

where subscripts z and T denote longitudinal and trans—
verse field components. Since on cylindrical structures
{(ie circular, elliptical, rectangular...) symmetries are
principally governed by azimuthal functions, longitudi-
nal components Ez and Hz can be expressed by '

Ho =T & Sen(n,“{i) - Se (£,v,%) (e)

ce (n,y,%) . ce (£,7,%) (o) (1)
=1 B, {cen(n,v1i). Cen(i,v1z> (e)

sen(ﬂ,Y1 ). Sen(€9Y1 ) (o)
in region (1) OxEgE, 5 0<ng2ll. For region (o)
€O<E<w 5 0<ng2ll, these components are defined as
o {Sen(n,—Yoz).Gekn(i,—voz) (e)

o cen(n,—yo ).rekn(g,—yo ) (o) )

Ez =1 P

Cen<n,—Yoz).Fekn(£,—Yoz) (e)
O n n

Sen(n,—Yoz)-Gekn(E,"Yoz) (0)

where v % and —y 2 represent respectively (k. % - 0q2/h
and (kcf— 82)q?/8 with x 2= wzuoe € and k 22 w2y £y

B is the phase constant of the Waves. g is the hagf fo-
cal distance. A , B , L and P_ are arbitrary constants
related by boungaryncongitions. Azimuthal and radial
functions are periodic Mathieu functions?with integer
order n because the periodicity of II or 2l exists for
the waves. A modes classifying system in the elliptical
dielectric waveguide can then, be given in relation with
the mode classifying system proposed by E. SNITZEE® in
the circular dielectric waveguide. So, for a mode m, de-
terminantal equations, derived from boundary conditions
get value of the ratio of arbitrary constant Am and Bm

as w : pulsation of the harmonic

wu A
_ o m wave
Ote or o R Bm B : phase constant of the harmo-
nic wave

This dimensionless ratio informs about the TE or TM cha-
ractor of the hybrid mode m. The hybrid modes are desi-
gnated by following thelr o value in the "far from cut—
of f" situation. So, the modes classifying system is
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-1 — < <1 —> 0 E
O<q < 1 > e HEmp O<a <1 > 0 Hmp

1<g < —=> e EH -y, <=1 ——> o HE
e mp [¢]

mp

where p denote the pth parametric zero of characteris-
tic equation of the mode m.

ITI - ELLIPTICAL MODELS FOR PLANAR STRUCTURES

Previous results allow to follow variation of
the dispersion characteristics and field components of
the guided modes when the elliptical cross section is
changed gradually in some way between slab (W/Dv3 or
e v.9) and cireular (W/D V.1 or e Vv.1) shapes. So ac-
cording their symmetries properties about the plane

v'=0 agreement between correspondlng modes in various
structures are summarized in Table T.

DIELECTRIC
WAVEGUIDES SLAB ELLIPTICAL | CIRCULAR
Furf:j::nhl oTH, o EH,, oo HE
{no_cut-off) JE, s HE, ’ “ TABLE I
higher TM,, e EH, 4 e Mg
or?icr o { °TEm1« ° HE":;" ° TE.‘.‘“
modes o, [l oMy o EHuqm e
k '{ R -

In the elliptical model description for planar structu-
res it will be always assumed that most of the power
flow is confined inside the new structures so as to
make their elliptical geometry no longer important as
far as dispersion characteristics and fields components
of modes are concerned. Moreover, as between slab and
elliptical dielectric rod it will be always supposed
that guided modes in planar structures are connected to
some guided modes of the elliptical models in a quasi
similar manner as described in Table I. Nethertheless
some precautions are necessary when planar structures
and models are in fact waveguides with baffles as it
will be illustrated in following section on microslot
lines* (see fig. 2).

IV - GUIDED MODES SPECTRUM OF SOME PLANAR WAVEGUIDES

a) Symmetrical slot-line (figure 2.a)

Actual and model symmetrical slot-line are waveguides
with baffles because propagating modes in it, must
satisfy the boundary conditions

Ez = 0 and EE =0 forn=0andn=1I

They take the place of the periodicity for the waves
in elliptical dielectric waveguide without baffles.
Appropriate solutions for axial components Ez and Hz
must be choosen among azimuthal and radial Mathi=u
functions with both rational and integer order n but
only the second type of solubions have been considered
in this work. Modes in symmetrical slot-line may be
constructed as following

. odd modes these modes are characterized by the
absence of the £ components of the electric field at the
planes of the baffles so, they are identical to odd mo-
des in elliptical dielectric waveguide without baffles.

. even modes : they are obtained from relations(1)
and (2) for even waves by substitutions

n Y4 2) ——>icen(n,Y12) Se (E,Y]Z)"Fe (g, YWZ
ce (n v, %) ——>isen(n,v12)and Ce tf.y,2 J>Ce (€, v ?)
2
se ( N 2) ——>icen(n,YO ) Gek (E»—Yo )A-Fekn<gq V5%
2 2
cepne?) —ase (v, ?) Pek (£,-y,2) > Gek (£, %)

with sign + if T < 1N < 0 and sign - if ™ < n < 27
Radial functions Fen and Gen are defined as

Fen(oaY-]z) =0 3 Ge;l(o,\{_lz) ()

Such symmetries choosen in Hz and Ez expressions and
relatlons(u) garanty the continuity of axial componeats
and their flrst derivatives across the slot plane

\x |< q 3 y' = 0). Components Hz suffers a discontiaui-
ty at n = 0 and ™ for £ > 0, due to currents flowing on
each side of the baffles conductlng surfaces. The elec-—
tric field at the plane of the slot is tangential to
the slot and acquires infinite values at the points of

the baffles.
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FIG, 2
b) Asymmetrical slotzline (figure 2.b)
Typical symmetries related above do not exist in this
case. Thus,modes in asymmetrical slot-line model can De

constructed as linear combinations of previous modal so-
lutions on symmetrical slot-line.

Periodicity of Il or 21 for the waves appears again on
this structure and appropriate solutions are construc-
ted using Mathieu function with integer order only. Mo-
des are of two types

. odd modes : which are similar to odd modes in sym—
metrical slot-line and odd modes in elliptical dielec—
tric waveguide without strip.

even modes: substitutions described above by re-
lations (3) are operated once again but in expressions
(1) and (2) for odd waves.

V - VARIOUS RESULTS ON PRACTICAL PARAMETERS

In symmetrical slot—-line model, two zero cut-off modes
are found to be propagated : the slot mode refferred to
as the fundamental baffled mode e HE and the classicdl
o EH1 surface mode of the ellipticag rod not perturbed
by conducting baffles. Modes in asymmetrical slot-line
are all baffled modes and the fundamental one, e HE
has also a zero cub-off frequency. At last in open sus-
pended strip-line only the o EH surface mode has a
zero cut—off frequency. Figures % give some results on

lowest order modes in various structures.
i
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s Com sl 4 No cut-off modes of :
e, =96 | 1) symmetrical slot-line
2) asymmetrical slot-line

3) open—suspended strip-
line.
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For slot modes, comparisons with
results, together with experimental measurements are
aleo piven in fisure 3. All measurements are in good

"second order" COHN's

agreement except ones on symmetrical slot-line. Indeed,
in its realization an incontrolable air-film between sib-
strates especially at the neighbourhood of the slot re—
duces widely the relative permittivity (0f superimposed
alumina substrates), Dispersion measurements are thus,
very critical on this structure.

Besides, efficiency of a structure described above to
be used as a transmission line can be examine since,
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field components are straightforwardly derived from ins-—
pection of mgdqg functions. So, like-TEM impedances for
any modes (Em,Hm) can be defined as

> >
LH .dl
,

where L' is a portion of the "peripherical" curve C
yielding direct current.
or as

= EE 1 -
ZCI T with I

2 (Por
Loy = e with V = J SRLh!
A

where V i1s the maximum voltage between two any points
A and B in waveguide crass section.
or at last as

-y

ZCVI I
In 7 o1’ ZCV expressions above, p is the power flow of
the moge m. Figure L4 shows these parameters for funda—

mental baffled modes in microslot lines. COHN's results

are also drawn in this figure allowing a direct compari-
son. —rT

T o T T
@) // ~ 1 /D -1
= cORN (1) N E -9
— IEI
200}~ " N\
// ;.icv-—! N\
S -~ L FIG. L
i \ ™~ | Liker.m.mM
T e gt . .
characteristic
2z impedances of
100 |- o 4 slot-lines.
//// 2 11 Asymeteicat slot-1ine
/ 2: Symetrical slot-ine
L
7 o S T NS Y W SN SR SR SO |
o

o) + -
Attenuation coefficient can also be calculated from this
nevw approximate treatment by classical formulas. It is:

= 8.¢8¢ D 1 ok
ay = 8.686 I JEm.Em dS  (dB/meters)
for dielectric losses. For "skin" losses it is
- @Hgﬁﬁ o=
ay = 8.686 8p ¢ E .H ¥al (dB/meters)

9 is the dieféctric conductivity. S is the cross
sectional dielectric medium. & is the "skin" depth.
C is a closed "periphericalcurve inside conductors.
Figure 5 give only some theoretical estimations of "skin"
losses for fundamental baffled modes in microslot lines.
No correction term taking into account metallization
process and surface roughness has been used in "skin"
depth expression.
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VI - ELLIPTICAL DIELECTRIC RESONATOR

Natural resonance frequency of the fundamental magne—
tic dipole mode can be estimated from the well known
First order and second order approximations’ However, it
is possible to improve the previous approximations by a
third order which is particularly convenient for study
of composite resonator together with the important tem-—
verature frequency stabilisation oroblem.®

Geometrical dimensions of the elliptical dielectric
resonator are thickness H, major axis 2a, minor axis 2b,
focal distance 2q and finally the eccentricity e.

In this third order, electric and magnetic fields of the
fundamental magnetic dipole mode satisfy radiation con-
dition by starting from all the walls. So, dispersion
characteristics of o TE and o HE_ . modes propagated
by respectively the clofed and the opened elliptical die
lectric waveguide are identified at any point (w,B).
This numerical comparison yields on equivalent closed
waveguide (a_, e, € ) which take the place of the
opened wavegiide (a, e; e ) at any given frequency. Then
at any freguency, the second order approximation is ap-
plied to find resonance condition of the resonator (a )
e, €y eq’ H). T T 7 T eq

(Hz x m)2x t0'*

30t —ist order =
R — 20d order
FIG. 6 ‘e | -~—~CUILLON[7]
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The figure 6 shows the resonance frequency of a

resonator (2a, e = 0.8, € = 100, H). The first and se-
cond order approximation are also plotted in this figure.
When the eccentricity becomes zero (in practice e .1),

a cylindrical resonator (D = 2a, €.» H) is obtained. On
this particular shape, the figure g set off excellent
agreement between this third order approximation and re—
sults published by Y. GARAULT and P. GUILLON Besides,
this third order gives a good interpretation of the phe~-
nomenon since theoretical and experimental values agree
within 1 %. Figure 6 describes a very important pro-
perty of the elliptical dielectric resonator. Indeed,
resonance frequency of a rectangular resonator (2a, 2b,
€, H) is quasi identical to resonance frequency of an
elliptical dielectric resonator (2a, e, £_, H) whose
cross—section is drawn into the rectangle (2a, 2b). Ec-
centricity of the Flliptical line is then given by

e = (1 - p2/a2) P
YIT - CONCLUSION

An elliptical model description for some planar wavegui-
des has been made. At present time all experimental re-—
sults have been always found in a correct order of ma-
gnitude with theoretical predictions. If more accurate
calculations are required oun actual structures, correc-—
tions can be made using well-known perturbation method
by regarding actual structure to be an elliptical one
with addition of dielectric material where it is neces—
sary.

REFERENCES
[1] C.YEH "Elliptical dielectric waveguide" J. Appl.
Phys., 33, pp- 3235-3243,(1969).

N. Me LACHLAN "Theory and Application of MATHIEU
functions. Oxford Univ. Press Oxford, England (1951)

[2]

[3) E. SNITZER "Cylindrical dielectric waveguide Modes"

J. Opt. Soc. Amer., vol. 51, n°5, pp.L91-198,(1961).

[4] 5.B. COHN "Slot-line on a dielectric substrate",

I.E.E.E. trans. on M.T.T., vol.MIT-17,pp768-T778,(196)
[51

H.Y, YEE "Natural resonant frequencies of microwave
dielectric resonators". I.E.E.E. Trans on M.T.T.

vol. MIT-13, p. 256, (1965).

P, CHOTEAU, J. CITERNE, L., RACZY and P. GUILLON
"Quick accurate design of a frequency stabilised
coaxial dielectric resonator". Elect. Letters, vol.ll

pp- 570-572, (1975). "Best Approximation for de-
Y. GARAULT et P. GUILLON sign of natural resonance
frequencies of microwave dielectric disc resonators.
Elect. Lett. vol. 10, pp. 505-507 (197h).

[6]

[7]

178



