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ABSTRACT

Guided modes spectrum of the elliptical dielectric waveguide has been completed and correspondence bet–
ween modes in circular, elliptical, rectangular and slab dielectric waveguides have been investigated with details
Based on the results, an elliptical model description technique for planar waveguides has been suggested.

technique has, by exemple,
This

been shown to be applicable for lower order modes in microslot lines and open suspended
strip-line . Elliptical dielectric waveguide is also shown as a very practical structure to a~~roximate dielectric
resonator of high permittivity with various shapes.

I - INTRODUCTION

The guiding properties of some important mi-
crowave and millimeter wave integrated circuit have
been considered in a great number of recent papers.

All they show the extreme mathematical complexity which

ie encountered to obtain rigorously dispersion charac-

teristics of guided modes in planar structures. In ccln-

trast, when the mathematical approach is very simplified
it is only an approximate technique available on some

limited cases.

Nowaday, in spite of their multiplicity effi-
ciency of come planar waveguidesto be ~~edaS transm~.
sion lines remains a very important problem. This is dk
to the lack of information about practical parameters
such as like – T.E.M. characteristic impedances, dielec–

tric and “skin” losses coefficients. These last practi–
cal data are estimated from knowledge of mode field com-

ponentswhich are not always easily deduced from the spe

cific numerical approach of the dispersion properties,

This paper showehow, from an approximate e~iP-
tical model description of some well known planar struc-

ture, the classical waveguide treatment yields both dis-
persion characteristics and fields components of funda-

mental and some higher order modes.

II – THE ELLIPTICAL DIELECTRIC WAVEGUIDE— —

The first of the main ideas of the study des-
cribed in this paper is tb.at the elliptical dielectric
waveguide can approximate a great number of different

shapes . So, depending upbn the eccentricity e such as :

/

l/cosh <0
e= 1/2

l/{1+(2/w/D)2}

the elliptical rod can take the form of a circular wave-

guide (e ~ O), an approximate rectangular waveguide

(.9<e <.1) and at last a slab dielectric waveguide

(eml) as shown in figure I.

FIG. 1 I

Fortunately, an exaCt analytic solution, although very
involved, exists for the guided mode spectrum of the e~

liPtical dielectric waveguide. However, only detailed
theoretical as well as experimental res~ts have been

giVen only on dominant modes e HE1l and o EH1l by C.YEH?

Thus,it was of our interest to complete them by propa–

gation properties of higher order modes.

The appropriate solution of the waveguide
treatment are of two types because the symmetry mirror

about the plane Y’=0. So, even and odd modes are res–
pectively defined by :

1

~z(x’,-y’ )=Ez~x;yl)

/

EZ(X’,–yT)=-EZ(X1,yi)

ET(X’,-y’ )=-ET(X!,Yf) L+T(x’;y~)=flT (x;y!)

even(e
H~(x’;y’ )=-+Hz(xi,yt)

odd(o)
I@x’yyr)=H~(xjyl)

HT(X’=Y’)=HT(Xjyf)
‘T(x’ry’)=-~(x~y’).

where subscripts z and T denote longitudinal and trans-

verse field components. Since on cylindrical structures
(ie circular, elliptical, rectangular. ..) ~y~etriesam

principally governed by azimuthal functions, longitudi-
nal components Ez and Hz can be expressed by : ‘

Hz, =~A

{

sen(n,yl 2). sen(E,y12) (e)

n
cen(v,yl 2). Cen(E,ylz) (o)

(1)

Ez , =~B

{

cen(~,Y12). Cen(~$Y12) (e)
n

sen(n,yl 2). sen(E,y12) (0)

in region (l): (l<~<~o ; 0<rI<211. For region (o) :

<o<t<~ ; G~rI~211, Illese components are defined as :

Hz. =~L

[

sen(rl,-yo2),Gekn(L,-yo2) (e)

n cen(rl,-yo’).%kn(~,-yop) (0)

(2)

Ezo =;P

[

cen(rl-yo2), Fekn(~,-yo2) (e)

n
sen(V,-Yo2).Gekn(~,-yo2) (o)

where y 2 and –y 2 represent respectively (k 2 -
and (ko2’- ~2)q2/8 with k12= U2LJ & e and k ‘~

, 62)q2/4

6 is the phase constant of the ~a$e~. q isOtheoh&!>;o-
cal distance. A , B , L and Pn are arbitrary constants
related by boun~a~nconaitions . Azimuthal and radial

functions are periodic Mathieu functionszwith integer
order n because the periodicity of II or 211 exists for

the waves. A modes classifying system in the elliptical
dielectric waveguide can then, be given in relation with
the mode classifying system proposed by E. SNITZEF,3 in
the circular dielectric waveguide. SO, for a mode m, de-
terminantal equations, derived from boundary conditions
get value of the ratio of arbitrary constant Am and Bm
as :

LQJo Am
a : pulsation of the harmonic

a
wave

eoro -T% R : phase constant of the harmo-
nic wave

This dimensionless ratio informs about the TE or TM cha-

racter of the hybrid mode m. The hybrid modes are desi–
gnated by following their a value in the “far from cut–

off” situation. So, the modes classifying system is :
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O<ae<–l —> e HE Cl<ao < 1
mP

1<a <~ —-> e FJI —Co<a < —
e w 0

th
where p denote the p parametric

tic equation of the mode m.

111 – ELLIPTICAL MODELS FOR

—> o EH
mP

—> o HE
mp

zero of characteris -

LANAR STRUCTURES

Previous results allow to follow variation of

the dispersion characteristics and field components of

the guided modes when the elliptical cross section is

changed gradually in some way between slab (W/D’_V3 or
e %.5) and circular (W/D w.I or e w.1) shapes. SO ac–

cording their symmetries properties about the plane
y!.o agreement between corresponding modes in vELriOUS

structures are summarized in Table I.

TABLE I

mcde, {1.Ti3,, . EH.,T
f.+,,

. HE,,Y,
.,. HE,, T,

.TE,7

In the elliptical model description for planar structu-

res it will be always assumed that most of the power
flow is confined inside the new structures so as to
make their elliptical geometry no longer important as
far as dispersion characteristics and fields components

of modes are concerned. Moreover, as between slab and

elliptical dielectric rod it will be always supposed

that guided modes in planar structures are connected to
some guided modes of the elliptical models in a quasi

similar manner as described in Table I. Nethertheless

some precautions are necessary when planar structures
and models are in fact waveguides with baffles as it
will be illustrated in following section on microslot
lines” (see fig. 2).

IV – GUIDED MODES SPECTRUM OF SOME PLANAR WAVEGUIDES

a) Symmetrical slot-line (figure 2a)

Actual and model symmetrical slot-line are waveguides
with baffles because propagating modes in it, must

satisfy the boundary conditions :

Ez=OandE =Oforrl=Oandrl=H
E

They take the place of the periodicity for the waves

in elliptical dielectric waveguide without baffles.

Appropriate solutions for axial components Ez and HZ

must be choosen among azimuthal and radial Mo,.hj eu
functions with both rational and integer order n but

only the second type of solutions have been considered
in this work. Modes in symmetrical slot-line may be

constructed as following :

odd modes : these modes are characterized by tie

abser,ce of the ~ components of the electric field at the

planes of the baffles so, they are identical to odd mo–
des in elliptical dielectric waveguide without baffles.

. even modes : they are obtained from relations(l)

and (2) for even waves by substitutions :

sem(~,Y1 2, —>icen(?l,yl’) SeP(L, yl 2)+ Fen(L, y,’)

2, —>fsen(n,y,2) cen.~,y,z)+cien(~, Y,2)#n.Y,
~ and

sen(rl,-y.’) —>fcen(n3Yo ) Gekn(t,-yo2)+Fekn( E,-Y02)
-2

cen(n,–yo ) —>tsen(n,yo’)
“k (~’-y:)+%(~’-y:)n

with sign + if n < n < 0 and sign - if T ~ q ~ 2n
Radial functions Fe.. and Ge. are defined as :

Fen(o,y, 2, =; ; Ge~(0,Y12) (4)

Such symmetries choosen in Hz and Ez expressions and
relations(4) garanty the continuity Of axial components

and their first derivatives across the slot plane

(lx’l<cl; Y’= O). Components Hz suffers a discontinui-

ty at n = O and TI fOr E > 0> due to currents ‘lowing ‘n
each side of the baffles conducting surfaces. The elec-

tric field at the plane of the slot is tangential to
the slot and acquires infinite values at the points of

the baffles. YI Y1

●)symmetrir.d
Ah- line 3!=E-=::w““

b)asymmkricd
slot. line

z&:@--: : “ “

FIG, 2

b) Asymmetrical slOt-line (figure 2.b)——$-———-—-—-- —--------—

Typical%mmetries related above do not exist in this

case . Thus,modes in asymmetrical slot-line model can be

constructed as linear combinations of previous moda~. so-

lutions on symmetrical slot-line.

c) Open susnended strip–line (figure 2.c)

Periodicity of II or 211 for the waves appears again on

this structure and appropriate solutions are construc-
ted using Mathj.eu function with integer Order onlY. MO–
des are of two types :

odd modes : which are similar to odd modes unsym-

metrical slot–~ine and odd modes in elliptical dielec-

tric waveguide without strip.

even modes: substitutions described above by re-
lations (3) are operated Once again but in eWressiOns
(1) and (2) for odd waves.

V - VARIOUS RESULTS ON PRACTICAL PARAMETERS

In symmetrical slot–line model, two zero cut-off mc)des
are found to be propagated : the slot mode refferred to

as the fundamental baffled mode e HE and the classicel
o EH1l surface mode of the elliptic!’ rod not perturbed
by conducting baffles. Modes in asymmetrical slot-lj.ne

are all baffled modes and the fundamental one , e HE

has also a zero cut-off frequency. At last in open ~~~s–

pended strip-line only the o EH1 surface mode has a

zero cut-off frequency. Figures 4 give some results on
lowest order modes in various structures.
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cut–off modes of :
symmetrical slot–line

asymmetrical slot–line

open–suspended strip–
line.

.
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For slot modes, comparisons with “second order” COHN’S
results, together with experimental measurements are

DISO given in figur~ 3. All measurements are in eood
a~reement except ones on symmetrical slot-line. Indeed,
in its realization an incontrolable air--film between sti–
strates especially at the neighborhood of the slot re-
duces widely the relative permittivity(~f superimposer]

alm.mina substrates). ~ispersion measurements are thus,
very critical on this structure.

Besides, efficiency of a structure described above to
be used as a transmission line can be examine since,

177



field components are straightforwardly derived from ins–

pection of m$de~ functions. So, like-TEM impedances for

anY modes (Em,Hm) can be defined as :

2Q

‘CT = 11::
with I =

L

H+. d?
,nl

where L’ is a portion of the “peripherical” curve C
yielding direct current.

or as :
_ w::

‘CTJ – ~
with V .

I’%”fi
i

where V is the maximum voltage between two any points
A and B in ws,v?guide cr~ss section.

or at last as :

_v
‘CVI - Y

;;ezmgJ::Cv :Xpr-sions above’ p ‘s ‘he power flow “f
Figure 4 shows these parameters for funda–

mental baffled modes in microslot lines. COHN’s results

are also drawn in this figure allowing a direct compari–
son. r , , 1 1 .—

-< 1 1 1 , I

1,

+z2zzzd
.0,

(WA.) .
.,

FIG. 4

Like-T.E.M.

characteristic
impedances of

slot–lines.

Attenuation coefficient can also be calculated from this

new approximate treatment by classical fornrolas . It is :

‘D I
= 8.686 $ E~.E~dS (dB/meters)

for dielectric losses. For “skin” losses it is :

8.686 ~6#H~.H~dl (dB/meters)
ac = .“

5D is the diel~ctric conductivity. S is the cross
SeCtiOIId dielectric mediu. 6 is the “skin” depth.
C is a closed ’’peripherical’’cmve inside conductors.
Figure 5 give only some theoretical estimations of “skM’

losses for fundamental baffled modes in microslot lines.

NO correction term taking into account metallization
process and surface roughness has been used in “skin”

depth expression.

(dB/cm ) I i I
s= = 9.6

.1 (c) W/D= 1

+ /
. .

.05
FIG. 5
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VI - ELLIPTICAL DIELECTRIC R&ONATOR

Natural resonance frequency of the fundamental magne–
tic dipole mode can be estimated from the well known
first order and second order approximations? However, it
is possible to improve the previous approximations by a

third order which is particularly convenient for study

of composite resonator together with the important tem–
perature frequency stabilisation problems

Geometrical dimensions of the elliptical dielectric
resonator are thickness H, major axis 2a, minor axis 2b,
focal distance 2q and finally the eccentricity e.

.-

In this third order, electric and magnetic fields of the
fundamental magnetic dipole mode satisfy radiation con–

dition by starting from all the walls. So, dispersion

characteristics of o TE
and 0 ‘Eel

modes propagated
by respectively the clo~;d and the opened elliptical die-

lectric waveguide are identified at any point (w,(3).
This numerical comparison yields on equivalent e20sed
waveguide (a , e, &r eq) which take the place of the
opened waveg;?de (a, e, Er) at any given frequency. Then

at anY frequencv, the second order armroxirnation is ap-
plied to find

e, e r eq, H) .

FIG. 6

Resonator

characteris–

tics.

..–.
resonance condition of the resonator (a-

‘/’ ‘i:

eq’
(w x cl)sx 108*

* ,(,a. ,,, 2“
30-—. —,, t .rder

+ -----2”J order “ ,/ J%e - .74
: -.--. -cLilLLON[71.
x o experim. tal ‘ ~ ;; ,

:

20

I“;:*
10

— I 2 (2a/H) + 3 h 5
The figure 6 shows the resonance frequency of a

resonator (2a, e = 0.8, E = 100, H). The first and se–
eond order approximation Ire also plotted in this figure.
Wnen the eccentricity becomes zero (in practice e~.1),

a cylindrical resonator (D = 2a, E H) is obtained. On

this particular shape, the figure ‘~ set off excellent
agreement between this third ordg:~ approximation and re–

suits published by Y. GARAULT and P. GUILLON? Besides,
this tihird order gives a good interpretation of the phe–
nomenon since theoretical and experimental values agree
within 1 %. Figure 6 describes a very important pro-

perty of the elliptical dielectric resonator. Indeed,
resonance frequency of a rectangular resonator (2a, 2b,

H) is quasi identical to resonance frequency of an
~f’.
e llptlcal dielectric resonator (2a, e, E , H) whose
cross–section is drawn intO the re~tangler(2a, 2b). Ec_

centricity of the elliptical line is then given by
~=(1– b2/a2) b?,

VII - CONCLUSION

An elliptical model description for some planar wavegui–

des has been made. At present time all experimental re-
sults have been always found in a correct order of ma-

gnitude with theoretical predictions. If more accurat,e
calculations are required on actual structures, cOrrec–

tions can be made using well–known perturbation method
by regarding actual structure to be an elliptical one
with addition of dielectric material where it is neces–
sary.

REFERENCES

[1]

[2]

[31

[4]

[51

[6]

[71

C.YEH “Elliptical dielectric waveguide” J. Appl.

Phys., 33, pp. 3235-3243,(1969).

?7. Me LACHLAN “Theory and Application of MATHIEU

functions. Oxford Univ. Press Oxford, England (1951)

E. SN12’ZER “Cylindrical dielectric waveguide Modes”
J. Opt. Sot. Amer., vol. 51, n05, pp.491-198,( 1961).

S.B. COHN “Slot-line on a dielectric substrate”.
I.E.E.E. trans. on M.T.T., V01.MTT–I~,PPT6a-TTa,(I~I)

H.Y. YEE “Natural resonant frequencies of microwave

dielectric resonators”. I.E.E,E. Trans on M.T.T.

vol. MTT–13, P- 256, (1965).

P. CHOTEAU, J. CITERA7E, L. RACZY and P. GUILLOfl

“Quick accurate design of a frequency stabilised
coaxial dielectric resonator”. Elect. Letters, VO1.11

PP. 570-572, (1975).
“Best Approximation for de–

Y. GARAULT et P. GUILLOiV sign of natural resonance

frequencies of microwave dielectric disc resonators.
Ele;t. Lett. vol. 10, pp. 505-507 (1974).


